An Adaptive, Collaborative Environment to Develop
Good Habits in Programming

Aurora Vizcaing Juan Contrer3s Jesus FavelaManuel Prietd

‘Computer Sciences Department
Universidad de Castilla-La Mancha. Escuela Superior de Informatica
Ronda de Calatrava 5, 13071 Ciudad Real, Spain
{ Rvizcaino, mprieto}@inf-cr.ucim.es
*Telematics Department
Universidad de Colima, México
Juancont@ucol.mx
Computer Sciences DepartmentCICESE, México
favela@cicese.mx

Abstract. In this paper we discuss how computer supported collaborative
learning (CSCL) can be deployed to develop new skills and habits in students at
university level. These considerations led to the development of an adaptive
environment to develop good programming habits. We start by describing the
difficulties in teaching and learning programming and more concretely, in
making students good programmers. Afterwards, we explain why group work is
an adequate approach to learn programming. Next HabiPro, an environment
that trains students in Programming is described. The principal features of this
system are: It is adaptive: depending on the group features the environment
proposes different pedagogic methodologies and different exercises. The tool
promotes collaboration and interaction among the students. The pedagogic
methodologies are based on reflection, observation, and relation. Finally, we
present our conclusions and discuss future work.

1. Learning and Teaching Programming

Programming is a subject which is normally taught in the first year of a Computer
Science, Computer Engineering degree, or other degrees related to information
technology.

Programming is characterised by being more practical than theoretical. It is a topic
that must be learnt “by doing” rather than memorising.

Many researchers indicate that the information that is received but isn’t used
during the learning process, is difficult to remember when we need it [8].

In a procedural topic, like programming, resolving practical exercises is even more
necessary than in a declarative topic like, for instance, hist®rgcedural learning
requires theoretical learning, but not in all cases. To sum up, the application of
practical or operative activities and/or the use of information is implied [2].

G. Gauthier, C. FrasapK. VanLehn (Eds.): ITS 2000, LNCS 1839, pp. 262-271, 2000.
O Springer-Verlag Berlin Heidelberg 2000

mailto:avizcaino@inf-cr.uclm.es
mailto:juancont@ucol.mx
mailto:favela@cicese.mx

An Adaptive, Collaborative Environment to Develop Good Habits in Programmi2é3

In procedural learning students must practice, learn from their mistakes and use
abilities such as observation, reflection or relation. But students are not used to this
type of learning.

Working in a group or using new technology can help students to develop skills
and to learn procedures. This paper explains on what occasions collaboration can
improve learning, and why group work is favourable in learning programming.
Afterwards, HabiPro, an adaptive and collaborative environment to train student in
programming is presented.

The contents of this paper are organised as follows: Section two explains why
collaboration is useful in learning programming, section three presents HabiPro a tool
to develop good habits in programming. The next sections describe the structure,
adaptability, and use of HabiPro. Section seven presents results obtained from
experiments carried out with HabiPro and finally we present our conclusions and
future work.

2. Collaboration in Learning Programming

At our university there is a large number of students that give up or fail programming.
Last year, of the 339 students who were registered, only 131 students went to the
exam and of them, 90 passed. Concerned about this, we asked programming students
and teachers why, in their opinion, programming has an high degree of failures.

The students’ answers were very diverse, but all of them agreed that they only had
a few hours of laboratory practice. They also agreed that when they were at home it
was more difficult to do the exercises because when they made a mistake they didn'’t
know how to continue because the books didn’t have the answers.

On the other hand, the teachers agreed that programming is a very abstract topic
and on many occasions they don’t know how to explain topics like recursion or data
structures.

Another reason why teachers think students don’t write good programs is because
students do not think about the possible solutions to the problem, and which of them
is the best. Pupils try to solve the problem as quickly as possible without thinking if
her/his solution is good.

When we studied the answers we thought that a distributed and collaborative tool
could be a solution to several of the presented problems so we decided to develop
HabiPro. The current methods of teaching programming include lecturing, and
laboratory sessions in which the students reinforce what they have learned in lectures
by developing small programs of their own. A further way of assisting students is to
provide computerised aids that are designed specifically for the novice [9].

Computer networks permit students to be connected, although they are in different
places, so a distributed environment permits students to work in a group and solve
exercises from their homes.

Collaborative learning has many advantages such as the interchange of ideas
among the students, or an increase of the motivation to learn. There is a substantial
body of empirical evidence demonstrating the positive effects of social interaction for
learning [11], [10], [6]. As the results of these studies emerged, it became apparent
that computer use can constitute a particularly valuable context for social interaction

[3].

264 Aurora Vizcaino et al.

So currently there are many learning programs based on collaborative learning. But
is collaborative learning good in all situations?

When people begin to learn programming, apart from buying a book about the
language that they are using, on many occasions they also attend courses and if they
have access to Internet, they join message lists, or news and work groups where they
can ask questions or advice from other programmers.

So the students look for the experience and collaboration of other people. This
shows that in programming learning collaborative techniques are often used because
students join together to write programs and to take advice about their doubts in a
spontaneous and natural way.

3. What is HabhiPro?

HabiPro (Habits of Programming) is a pedagogical and collaborative software
designed to develop good programming habits. It doesn’t try to teach programming
but to develop in the novice students skills such as observation, reflection or structure,
which are necessary to become good programmers.

The interface of the application has two windows (Fig. 1). One of them is a chat
window that permits communication among students. And the second one is a shared
window (work window) where students must collaboratively solve a problem.

E24QUESTIONS (Aurora) I [=] E5 | [FESEHAT Aurers) I [=] 3
QUESTION 2 File Connection Qptions Help
Correct the mistake in this program: =l D Zu P B
3 = = Y
lass Exercise: urora. inl e Prol em 1s istance mus e —
lass E 2 | [>I think th blem is dist t be |
public static void wain|String args[]) { a long
int lightSpeed; Mercedes>I'm not sure, Why do you think that?
long days; BurorarBecause the distance stores a very big
long seconds; Fanme
S EhETEss Mercedes>0Ok. T think you are right
A=y Burora>Then, I am going to write the solution
days=1000;
seconds=days*24* 604 60;
distance=1ightSpeed*seconds;
+
}
L] Ll_l
BNSWER ;I
= H[Aurora
long distancer = pa— _Imercedes
Free turn
Back Forward
Connected Aurora

Fig. 1.Interface of the application

The work window can present four types of exercises:

¢ Finding the mistake: Students must find a mistake in a program. All programmers
at some time must find the mistake because the program doesn’t work. It is
convenient for novice students to be in the habit of thinking and predicting which
is the mistake or mistakes that don’t permit the program to work correctly. In
these types of exercises the most frequent mistakes made in Java programming
are shown.

An Adaptive, Collaborative Environment to Develop Good Habits in Programmi2é5

e Put a program in the correct order. With this exercise we try to help students to
learn to structure a program and reflect on the order in which the sentences
should be.

To solve the exercises the screen is divided into two parts. In the first one the
disarranged program appears. When the students choose a sentence it is
automatically put into the second window. At the end, students check if they have
ordered the program correctly. In this case, the program is presented with
comments and indenteds. The visualisation of a perfectly ordered program helps
the students to realise that the presentation of a program aids a better
understanding of what the program does.

* Predicting the result: This exercise also attempts to show the importance of
creating programs which are easy to understand (with comments and with
significant names of variables) even for other people. At the beginning, programs
without comments and variables with random names will be shown to the
students and they must guess what the program does. Next, a similar program
will be shown but in this case the program will have adequate comments and
significant names of variables so that students can see that in the second case it is
easier to trace a program.

e Completing a program: Students must write one sentence that is omitted. In this
exercise we try to make sure that there are different solutions. The system only
accepts the best solution. So students learn that normally a problem can be solved
using different techniques but in many cases one solution is better than the rest.
They must try to find this solution. For instance, the system shows a program
where students must declare a variable. It is possible to use an integer but perhaps
only a byte is really necessary, so students can learn it is important to save
memory when possible.

When a group proposes a solution, if it is incorrect the system shows four types of
‘help’. This assistance has two goals: first, to help the group to find the solution, and
second, to obtain information about the group. The following explains how HabiPro
achieves both goals.

The first type of assistance gives clues to the student about how they can solve the
problem. So they must think about and reflect on the solution. This type of help is
situated at the beginning to try to influence students to choose it (first button).

The second help button shows the solution and an explanation of it because the
problem is solved with that technique.

The third one shows a similar example of the problem that students have to solve,
and its solution. In this case students must use the techniques of comparing and
observation to detect which part of the example looks like their problem and relate the
solution in the example to their own problem.

The last one shows only the solution to the problem.

The choice of the type of help gives information about the group motivation and
their willingness to learn. If a group frequently chooses the help button that only
shows the solution, this indicates that their motivation is very poor because they
aren't interested in knowing why that is the correct solution. On the other hand if
other groups prefer to use clues or compare the example with the problem this
indicates that the group likes thinking about the solution and that the group is active.
If a group prefers to see the solution with an explanation it is because the students are

266 Aurora Vizcaino et al.

interested in knowing “the reason why things are as they are”. In this way, the
solution is not only a tool of assistance for the group, but also for the system itself.
The system is able to detect each group’s characteristics depending on the type of
assistance chosen.

4. Structure of the System

HabiPro has a client-server architecture (Fig. 2). The client and the server are divided
into two parts. Those of the client are formed by:

e Interface: A chat window where students write possible solutions to the problem.
A shared work window of the type WYSIWIS (What You See Is What | .See)
And a small window where the information about the other users appears are the
windows that the system presents to the users.

« A collaborative component, which gives collaboration awareness to the students.
This part is very important in non-presence collaboration where students lack
some advantages like eye contact or knowing the companion’s emotional state by
her/his tone of voice. For this reason a window is added indicating how many
students are connected, their names and if it is possible, their photo. It also shows
the frequency with which each person takes part in the conversation in order for
the students to know who they are working with and which people are
participating most.

e Collaboration awareness and emotional state during the collaboration process are
important topics that are currently being researched. Systems to detect the
emotional state of companions are currently being designed [5].

e Student memory: In this part all actions performed by the student are stored. Part
of this information will be sent to the server and the rest will be used to produce
statistics about the progress and the participation of each student.

e Communication component: This allows the sending of messages to the server
and the reception of messages from the server.

The server architecture is composed of three parts:

e The communication part: This permits a group of students to be connected, and to
be able to send and receive messages. The main functions of these components
are:

» Connection: Each time the server detects that a client wants to connect, the
server has to create a new communications channel and to tell the connected
clients that a new client is connected.

» Disconnection: When a client abandons the application the server informs
the rest of the clients who has disconnected.Send control events and
messages to the clients.

e Specific database: The database stores the exercises, solutions and aids (clues,
explanations, and examples) that HabiPro proposes to the group. If we want to

An Adaptive, Collaborative Environment to Develop Good Habits in Programmi@é7

use the application to teach other topics, it is necessary to change the information
in the specific database for the new information related to the new topic.

e Group model: This is an essential part of the system. “A model of cooperative
problem-solving should predict what forms of cooperation can exist and ideally
what interactive learning mechanisms they trigger” [1].

The group model is based on the model proposed by Ana Paiva [7]. The more we
know about someone, the more we know his/her necessities and preferences. In
the same way, the more information the group model has about the people with
whom it interacts, the more precise it is in determining what exercises are
needed.

The group model represents and characterises the group. The group model may
includetwo types of information: One of them relates to pedagogical aspects, and
the second relates to social aspects. This is because when a group is learning,
apart from knowing what knowledge the group has, it is important to also know
the characteristics and preferences of the group.

The information stored in the group model will be used to adapt the system to the
group.

In relation to pedagogical aspects, the group model stores theses points:

» What abilities the group has. This information is obtained from the exercises
done by the group.

» What type of exercises the group prefers. After each exercise each student
must indicate, his or her opinion about the degree of difficulty of the
exercises and if s/he thinks the exercise is interesting, boring, etc, by filling
in a brief questionnaire.

» What mistakes the group has made. These are obtained from the mistakes
made in solving the exercises.

In relation to social aspects, it is important to know the degree of motivation of the
students and with what frequency each person collaborates:

» Motivation: The system has four different types of help (explained in the
second point). Depending on the type of help chosen, HabiPro can suppose
the degree of group motivation.

» Participation: Using the conversation in the chat window HabiPro checks
how many times each student takes part in the conversation. If the same
student always takes part perhaps there was a leader of the group, or maybe
the rest of the group are passive people. This is important information if the
system is to succeed in allowing everybody to take part in solving a problem.

268 Aurora Vizcaino et al.

Clent Server

= (S
Interface O

C ollabor ative A tudernt Group apecific

Cotn ponert Ml emm oty Ilodel Dratabase

Z oar e ati o

Fig. 2. Architecture of the HabiPro

5. Why HabiPro is Adaptive?

The group model has stored different social and pedagogic patterns. Each pattern has
characteristics that describe behaviours. The patterns also contain a list of exercises,
types of clues and pedagogic techniques.

While the group is working with HabiPro the group model compares the new
information with the characteristics in the patterns and tries to classify the group in a
pattern. Once the group is classified, the pattern indicates which exercises and work
methodology is the most adequate for a group with a type of specific behaviour. For
instance, a group could have a pedagogic pattern with the follow characteristics:

« Mistakes: The group can’t find the mistakes in the problems.
« Preferences: Exercises that involve filling in the program.
* Frequent Solution chosen: Solution without explanation.

For this type of pattern the group model proposes:

O To show low level exercises.

O Not allowing the group to choose help without explanation with out letting a
certain amount of time elapse.

O To show some “finding mistakes exercises” adding some clues in order to aid
students to find the mistakes.

And the same group could have a social pattern with these characteristics:
e Participation: Only one or two people take part.
e Motivation: Low

An Adaptive, Collaborative Environment to Develop Good Habits in Programmi2§9

This pattern proposes five activities that HabiPro can use to increase motivation and
participation:

0 HabiPro activates the rotator turn system, so that all students must take part in the
work.

0 Presenting more attractive exercises.

O The system produces personality questions, indicating the name of the person
who must answer.

0 The system gives points to the person who writes the correct solution (like a
game).

0 By showing statistics, which demonstrate the performance of other groups that
worked with is system, thus the group can compare this with their own
performance.

The group model in this case is not only the representation of the characteristics of
the group, it is also the component that permits the system to be adaptive.

6. Evaluating HabiPro

Several versions of HabiPro have been implemented and tested. Experimenting with
these versions has allowed us to establish the more adequate number of people that
can work using HabiPro, and observe what social protocols are used by the students in
order to come to an agreement, or give solutions.

Firstly, a version with free floor protocol was tested. Twenty-three students divided
into different sizes of groups (in order to research in which groups collaboration was
better) had to solve twenty exercises. Each student used a computer, and they
interchanged ideas via the chat.

When students agreed about a solution one of them had to write the solution in the
answer window and if the solution was correct, the system automatically showed all
group students the next exercise.

This version presented a problem: Some students wrote the solution without
consulting with their colleagues, so if the answer was correct all the students
advanced to the next exercise, although some of the group members did not
understand why the solution was as it wHsis fact produced a feeling of anger and
frustration in the other members of the group. The same students proposed a solution
to the problem: The system should only accept a solution when it was proposed by alll
the students (each student has to write the solution in the answer window). Currently,
a version with this feature is being implemented and we hope to test it soon.

The second version has a turn protocol. Only the student whose turn it is can write
the solution in the answer window. A student can take a turn until another student
asks for it. The turn protocol facilitated communication because students did not have
to spend time deciding who would write the answer.

In this version, the interface shows a traffic light that tells the student if she/he has
a turn (green light) or if she/he hasn't it (read light). So, the person who has the green
light knows that he has to write the answer in the adequate window.

270 Aurora Vizcaino et al.

We could prove that the turn protocol is also convenient for collaboration, because
if one student did not collaborate his/her companion could give a turn to this person
and in this way motivate his/her collaboration.

The experiments were done with groups of different sizes: five groups formed of
two students, three groups of three and one group with four people.

When students finished solving the exercises they filled in a form where they
answered some questions and they could also express opinions about the experience.
The group with four companions agreed that it was very difficult to work with so
many people, and in many cases no one took part in the activities. On the other hand,
the groups with three members solved less exercise that the groups with two
members, this could be because the groups with three people spent more time in
communication, and the negotiation was more difficult than in groups with two

members.

We can conclude that HabiPro woks efficiently with groups with two members, or
a maximum of three. With more people collaboration decreased and communication
was more difficult.

We can also observe that adding a turn protocol increases the performance and
facilitates collaboration.

7. Conclusions

Collaborative learning has many advantages but before applying collaboration in a
topic we must study whether the topic is really adequate to be handled in a
collaborative environment.

In this paper we have explained why programming is a field which can be learned
by using collaborative techniques.

HabiPro, a tool for developing good programming habits in the novice students has
been presented and its main characteristics such as adaptive techniques and methods
to teach the student to think have been explained.

Creating adaptive collaborative systems is more difficult than creating individual
adaptive systems because apart from the pedagogical aspects, we must also take into
account aspects related to social relations and group dynamics.

8. Future Work

When a set of people work or study in a group a figure usually appears who
influences in the group, sometimes voluntarily and other times involuntarily. This
figure is the leader, who can influence the group positively or negatively. If we can
insure that the leader’s influence is good we can help learning to be more efficient.

We want to add a virtual student in HabiPro. This virtual agent must collaborate
with the group, and perhaps on some occasions it could carry out the roll of leader.

The virtual student is a software student who can control communication. For
instance when a person doesn’t take part in the conversation, the virtual student can
say to him/her: “What do you think about this?”. Also the software student can

An Adaptive, Collaborative Environment to Develop Good Habits in Programmi@g 1

propose correct answers when the rest of the members in the group have proposed
wrong ideas.

The student’s virtual knowledge could be similar to the knowledge of a teacher or
an expert, but it is better for learning if students work with a student although it is
“virtual” one than with a teacher. This is because when somebody tries to collaborate
with somebody who has a higher status (a boss, teacher...), it is not collaboration but
obligation, so the mativation is less than in the case where the members of a group
belong to the same status. Collaboration is more likely to occur between people of a
similar status than between a boss and his/her employee, or between a teacher and a
pupil [4].

Currently we are carrying out an experiment that will allow us to know and limit
the language that students use in the communication process in order to know the
discourse universe that the virtual student must have.

References

1. Baker, M. “The roles of models in Artificial Intelligence and Education Research: a
prospective view”. International journal of Artificial Intelligence in Education, 1999.

2. Castafieda Yanez, M. 1995. “Analisis del aprendizaje de conceptos y procedimientos”.
Editorial Trillas.

3. Crook, C. “Computers and the Collaborative Experience of Learning”. London:
Routledge.

4. Dillenbourg, P.; “Introduction: What Do You Mean By Collaborative Learning?”. In
Collaborative Learning. Cognitive and Computational Approaches. Edited by Pierre
Dillenbourg. Elservier Science, 1999.

5. Garcia, O.; Favela, J.; Machorro, R. “Emotional Awareness in Collaborative Systems”. In
Proceedings 5 International Workshop on GroupWare. Cancin, Mexico, September,
1999.

6. Light, P.; Littleton, K.; Messer, D.; Joiner, R. “Social and communicative processes in
computer-based problem solving”. European Journal of Psychology of Education, 9 (1),
93-109. 1994.

7. Paiva, A. "Learner Modelling for Collaborative learning Environments". In Boulay, B.,
Miyoguchi, R.(Eds.). Artificial Intelligence in Education. pp 215-222. 10S Press.Pg 215-
222, 1997.

8. Schank, R.; Kass, A. “A Goal-Based Scenario for High School Students”.
Communications of the ACM. Vol 39, N° 4. 1996.

9. Smith, P.A.;Webb G. F. “ Evaluation of Low-Level Program Visialization for Teaching
Novice C Programmers”. In proceedings of ICCE’9Y,Ifternational Conference on
Computers in Education. Chiba, Japan, November, 1999.

10. Teasley, S.; Roschelle, J. “Constructing a joint problem space: The computer as a tool for
sharing knowledge”. In Computers as Cognitive Tools (pp 229-257). S. P. Lajoie & S.J.
Derry (Eds.). Hillsdale, NJ: Lawrence Erlbaum Associates. 1993.

11. Tudge, J.; Rogoff, B. “Peer influences on cognitive development: Piagetian and
Vigotskian perspectives”. In Interaction in Human Development (pp. 17-40). M.H.
Bornstein & J. S. Bruner (Eds.). Hillsdale, MJ: Lawrence Erbaum Associates. 1989.

	Learning and Teaching Programming
	2. Collaboration in Learning Programming
	3. What is HabiPro?
	4. Structure of the System
	5. Why HabiPro is Adaptive?
	6. Evaluating HabiPro
	7. Conclusions
	8. Future Work
	References

